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Metal-to-Semiconductor Transition in Squashed Armchair Carbon Nanotubes
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We investigate electronic transport properties of the squashed armchair carbon nanotubes, using
tight-binding molecular dynamics and the Green’s function method. We demonstrate a metal-to-
semiconductor transition while squashing the nanotubes and a general mechanism for such a transition.
It is the distinction of the two sublattices in the nanotube that opens an energy gap near the Fermi
energy. We show that the transition has to be achieved by a combined effect of breaking of mirror
symmetry and bond formation between the flattened faces in the squashed nanotubes.
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FIG. 1. (a)–(c),(e),(f) Conductances of various nanotube
structures, which are shown as the insets. E is the energy of
injected electrons, and the Fermi energy of the ideal armchair
�8; 8� nanotube is taken as zero. (d) The conductance gap and
ergy gap, leading to a MST. This can be achieved, for dAA0 as a function of the tip distance dy.
The discovery of carbon nanotubes [1] has stimulated
intensive research interest, partly because of their unique
electronic properties and their potential application in
nanodevices. In particular, much effort has been made
to manipulate the low-energy electronic properties of
carbon nanotubes, as it is the requisite step for using
nanotubes to realize a functional device.

A single-walled nanotube (SWNT) can be either semi-
conducting or metallic depending on its diameter and
helicity [2]. A tube is metallic if the Fermi k point of
the corresponding graphene sheet, from which the tube
is wrapped, remains as an allowed k point by the peri-
odic boundary condition for the tube; otherwise, it is
semiconducting. Consequently, most previous studies
have focused on a popular idea of modifying the elec-
tronic properties of SWNTs by structural perturbation, in
an attempt to shift the Fermi k point away from an
allowed state, resulting in a metal-to-semiconductor
transition (MST).

Various experimental methods, such as twisting [3],
introducing topological defects [4], and stretching [5],
have been used to manipulate the electronic and transport
properties of nanotubes. Theoretical studies [6–8] have
also been performed to help explore the correlation be-
tween the structural perturbation and the change of elec-
tronic properties. However, in general, the experiments
are done in a guesswork manner, because it is a priori
unknown how a given structural perturbation would
change the electronic properties. One major difficulty is
that the structural perturbation occurs for atoms in real
space, but the change of electronic properties has to be
revealed by electronic bands in reciprocal space.

In this Letter, we demonstrate a new method of ma-
nipulating electronic properties of SWNTs by examining
directly the atomic structural perturbation in real space
without the need of analyzing the bands in reciprocal
space. We show that, when a structural perturbation
makes the two original equivalent sublattices in a metal-
lic armchair SWNT distinguishable, it will open an en-
0031-9007=03=90(15)=156601(4)$20.00 
example, by simply squashing the tube. Furthermore, we
show that the physical distinction of the two sublattices
must be achieved by a combined effect of mirror-
symmetry breaking (MSB) and bond formation between
the flattened faces of the squashed tubes, while neither the
MSB nor the bonding alone would result in the MST.

We demonstrate the basic principles of our method by
squashing an armchair �8; 8� SWNT, as shown in Fig. 1.
The simulations, for both structural optimization and
calculation of electronic transport property, are per-
formed using a four-orbital tight-binding (TB) method.
To squash the tube, two identical tips with a width of dx �
5:80 �A are used to press the tube symmetrically about its
2003 The American Physical Society 156601-1
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FIG. 2 (color online). Contour plots of the charge density
(unit: e= �A3) in the cross section of the nanotube structures in
Figs. 1(b), 1(c), and 1(e).

P H Y S I C A L R E V I E W L E T T E R S week ending
18 APRIL 2003VOLUME 90, NUMBER 15
center in the �y direction, as shown in Fig. 1(b). The tips
are assumed to be super stiff with a hard-wall interaction
with the tube. At each tip position, the atomic structure,
i.e., the shape of the tube, is optimized [9]. Most notice-
ably, as the tube is pressed, its cross section changes from
a circle to an ellipse [Fig. 1(b)] and then to a dumbbell
[Fig. 1(c)]. As long as the distance between the two tips is
not too short (> 1:8 �A), the tube is found to maintain its
structural integrity, and the whole process is re-
versible. Further pressing of the tips to shorter distances
(< 1:8 �A) would permanently damage the tube.

Using the optimized structure at all tip positions, we
employ the TB Green’s function method [10–12] to study
the electronic transport properties of the squashed tubes.
Within the framework of the Landauer approach, the
conductance is expressed as G � G0Tr�	LGC	RG

y
C�

[13,14], where G0�� 2e2=h� is the unit quanta of conduc-
tance, GC is the Green’s function of the conductor, and 	L
and 	R are the spectral density describing the coupling
between the leads and the conductor.

The typical conductance curve of a perfect armchair
�8; 8� SWNT is shown in Fig. 1(a). It represents a metallic
behavior, which is well known for armchair SWNTs. The
conductance near the Fermi energy EF is 2G0, indicating
that there are two conducting channels. For the squashed
tube, we consider two different cases: one breaking the
mirror symmetry (MS) about the y axis [Figs. 1(b) and
1(c)] and the other preserving the MS [Fig. 1(e)].

When the tube is squashed without MS, its conductance
remains at 2G0 near EF with an elliptical shape [Fig. 1(b)],
but drops sharply to zero with a dumbbell shape [Fig. 1(c)].
Thus, a MST can be achieved by squashing the tube, but
only after the tube is squashed to a dumbbell shape. The
physical difference is that the two flattened faces of an
elliptical tube remain separate without bonding (atomic-
orbital overlap), while they become close enough in a
dumbbell tube to form new bonds (see discussion below).
It has been suggested that the MSB may lead to opening
an energy gap in a metallic armchair SWNT [6].
However, Fig. 1(b) clearly shows that the MSB by itself
cannot open an energy gap and its only effect is to cause a
slight variation in the conductance step. A gap may be
opened only after the atomic orbitals on the two flattened
faces of the squashed tube, without MS, overlap with each
other to form new bonds.

To quantify the degree of squashing in terms of the
bonding between the two flattened faces, we monitor
the distance between the two closest atoms, dAA0 , A in
the upper face and A0 in the lower face, as shown in
Fig. 1(b). In Fig. 1(d), we plot the conductance gap near
EF and dAA0 , as a function of the tip separation dy. Clearly,
the conductance gap appears when dAA0 < 2:6 �A. As a
cutoff length of 2.6 Å for the C-C bond is used [10], it
indicates that the gap is only opened after the atom A
starts to form a bond with the atom A0. This is further
confirmed by plotting of charge density, as shown in
Fig. 2. It can be vividly seen that the charge density
156601-2
overlaps between the two flattened faces in the dumbbell
tube [Fig. 2(b)], reflecting the new bonding between
atoms A and A0. In contrast, no density overlap and,
hence, bonding occurs in the elliptical tube [Fig. 2(a)].

The above results of the squashed tubes without MS
demonstrate that bond formation between the flattened
faces plays an important role in driving the MST.
However, it remains unknown whether such bonding
alone is sufficient to induce the MST, i.e., whether the
MSB also plays a role, as suggested before [6,15]. To test
this, we take a look at the squashed tubes preserving the
MS, as shown in Fig. 1(e). Interestingly, the conductance
remains at 2G0 near EF, even when the distance between
the two flattened faces is less than 2.60 Å. This indicates
that the MST cannot be induced by the bonding, if the MS
is preserved. [The bonding between the two flattened
faces is also reflected by the charge density distribution
in Fig. 2(c).] Thus, we conclude that the MST can be
driven by neither the MSB nor the bonding alone; it has to
be driven by the combined effect of the two.

Next we show that the combined effect of the MSB and
the bonding between the flattened faces in a squashed
armchair SWNT is to make the two original equivalent
sublattices in the tube distinguishable, and such distinc-
tion can then be used as a unique condition for driving the
MST. It is well known that the graphene sheet and, hence,
the nanotube have two equivalent sublattices, which we
may label as A and B sublattices. The operation of squash-
ing can then be defined in reference to them. If the y axis,
along which we squash the tube, is chosen to pass through
two atoms from the same A (or B) sublattice, as is the case
156601-2



FIG. 3. (a) The energy dispersion relations near EF of an
ideal armchair �8; 8� SWNT with a pp� model. (b) The phase
correlations at kF between the three equivalent atomic positions
B that are the nearest neighbors of the atomic positions A. (c) A
schematic representation of the states � and � within the cross
section of the tube with q � 8. (d) Configurations of the new
bonds formed between the two states � and � for structures
AA0 and AB0. The AA0 structure consists of two � bonds
between A and A0; the AB0 structure consists of two � bonds
and two � antibonds between AB0 and A0B.
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in Figs. 1(b) and 1(c), the squashed tube will break the MS
about the y axis. Upon the atomic-orbital overlap between
the two flattened faces, A atoms bond with A atoms
[Fig. 2(b)]. If the y axis is chosen to pass through two
atoms from different sublattices (one from A and the other
from B), as is the case in Fig. 1(e), the squashed tube will
maintain the MS. Upon the atomic-orbital overlap, A�B�
atoms bond with B�A� atoms [Fig. 2(c)]. In the following,
we refer to the first case as the AA0 structure [Figs. 1(c)
and 2(b)] and the second as the AB0 structure [Figs. 1(e)
and 2(c)]. Note the two differ by a rotation of 7:5� about
the y axis.

For an ideal armchair �8; 8� SWNT, its metallic behav-
ior can be understood from its energy dispersion relations
within a simple pp� model [16]:

Eq�k� � � �0f1� 4 cos�q�=8�

	 cos�ka=2� 
 4 cos2�ka=2�g1=2;

��� < ka < �; q � 1; . . . ; 8�; (1)

where k is the wave vector along the z axis, a � 2:46 �A
is the lattice constant, and �0 is the nearest-neighbor
hopping integral. The energy dispersion relations near
EF are shown in Fig. 3(a). The two lines, crossing at the
Fermi point, correspond to the two eigenstates (bonding
� and antibonding �) with the quantum number q � 8,
as all eight atoms in one sublattice have the same phase.
The phase relations between the nearest-neighbor atoms
at the Fermi vector kF�� �2�=3� are shown in Fig. 3(b).
The states � and � within the tube cross section are
shown in Fig. 3(c). Note that the interaction energies
between the two sublattices cancel out each other by
symmetry, leading to a zero total interaction energy:
�0e

i�’B�’A��1
 e�i2�=3 
 e�i4�=3� � 0. This cancella-
tion, independent of the phase difference �’B � ’A�,
leads to the degeneracy of the eigenstates � and � at kF.

We next extend the above model by including the
interaction (bonding) between the two flattened faces
in a squashed nanotube, using a perturbation Hamil-
tonian [15]

H0�k� �
�
����k� ��� �k�
����k� ��� �k�

�
: (2)

The diagonal matrix elements ��� and ��� merely
act to shift the location of the � and � bands and,
hence, the energy and location of band crossing. It is
the off-diagonal elements ��� and ��� that cause quan-
tum mechanical level repulsion and, hence, open an en-
ergy gap.

If a MS exists, such as in the AB0 structure, the mirror
operator M must be applied: we have M��� � �;
M�H0� � H0; M��� � ��. Then ��� � M���� � �
M�h�jH0j�i� � �h�jH0j�i � ���� , which gives
��� � 0. Thus, if the MS is preserved, the off-diagonal
elements are always zero and the band crossing per-
sists without gap opening, regardless of whether a bond
exists between the two flattened faces. This indicates that
156601-3
the MSB is a necessary (but not sufficient) condition for
the MST.

The bonding configuration between the two states �
and � for the two structures AA0 and AB0 is shown
in Fig. 3(d). For the AA0 structure, the off-diagonal ele-
ment consists of two � bonds as ��� � hpjH0jpi 

hpjH0jpi � 0, where jpi is the carbon 2py orbital. In
contrast, for the AB0 structure, it consists of four � bonds,
which cancel out as ��� � ��hpjH0jpi 
 hpjH0jpi� 

�hpjH0jpi � hpjH0jpi� � 0. So the off-diagonal element
for the AB0 structure is always zero, in agreement with the
mirror-symmetry analysis discussed above.

The above analysis clearly demonstrates that the MST
must be driven by a combination of the MSB and the bond
formation, which effectively distinguishes the two origi-
nally equivalent sublattices (A and B). Without the bond-
ing, the two sublattices are always equivalent. Upon the
bonding, the two remain equivalent if the MS is pre-
served, because the bonding occurs between atoms from
two sublattices in a symmetric manner, but become dis-
tinguishable if the MS is broken, because the bonding
156601-3
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FIG. 4 (color online). The LDOS
(unit: eV�1) distributions near EF over
two atomic layers of the nanotubes for
AA0 (a) and AB0 (b) structures. The
atoms in the B (A) sublattice are labeled
1 (9) through 8 (16) for the first atomic
layer and 17 (25) through 24 (32) for
the second atomic layer.
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occurs between atoms within only one sublattice (A),
making it different from the other sublattice (B).

Such a distinction of the two sublattices is further
revealed by the local density of states (LDOS), as shown
in Fig. 4. The LDOS is defined as [11] LDOS�j; E� �
� 1

� ImGC�j; j; E�, where j is the atom index in the nano-
tube. In Fig. 4, the LDOS of two atomic layers (along the
z axis) are plotted at an energy interval from �0:3 to
0.2 eV. Each layer consists of two sublattices (A and B) of
16 atoms. For an ideal tube, the LDOS near EF are
homogeneously distributed over the two equivalent sub-
lattices A and B. For a squashed tube, in an AA0 structure
[Fig. 4(a)], the bonding between atoms A and A0 distin-
guishes sublattice A from B, resulting in a redistribution
of the LDOS. Specifically, the electrons tend to distribute
around A sites below EF, but around B sites above it. This
causes a discontinuity in the energy spectrum, as shown
in Fig. 4(a). In contrast, in AB0 structure [Fig. 4(b)], the
LDOS crosses EF continuously because the off-diagonal
elements are zero and the states � and � continue to be
the eigenstates. The inhomogeneity of the LDOS in
Fig. 4(b) is caused by the inhomogeneous curvature of
the squashed nanotube.

Last, we show that squashing the armchair SWNT can
be used as a general approach to drive the MST, which is
practically important. It would be rather inconvenient if
the MST can be driven only by squashing the tube along a
specific direction breaking the MS. Fortunately, we find
that the MST can, in fact, be driven by squashing the tube
along any direction. In case one starts with squashing the
tube along a direction that preserves the MS, all that
needs to be done is to squash the tube to a larger extent,
to a point where spontaneous symmetry breaking occurs.
Figure 1(f) shows that for AB0 structure, if one continues
to press the tips beyond Fig. 1(e) (dy � 2:60 �A) to Fig. 1(f)
(dy � 2:00 �A), a gap near EF will eventually appear,
because of the spontaneous breaking of MS, causing the
two sublattices to be distinguishable.

In summary, we demonstrate that squashing the arm-
chair SWNT can be used as a general approach to induce a
MST, which may find practical applications in novel
nanodevices, such as for a mechanical nanoswitch. The
underlying mechanism is to make the two originally
equivalent sublattices in the tube distinguishable, which
156601-4
requires a combined effect of MSB and bond forma-
tion between the two flattened faces in the squashed
tube. Such distinction of two sublattices is likely to be
generally responsible for the semiconductor behavior of
certain classes of nanotubes, such as boron-nitride nano-
tubes. Besides squashing the tube, other methods, such as
chemical adsorption, might be used to distinguish the two
sublattices and, hence, to induce the MST.
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